
12 Factor App

Codecinella - September 2022

What is 12 Factor App?

A methodology for building software-as-a-service apps that

● Minimizes time and cost for new developers joining the project by using declarative
formats for setup automation

● Offers maximum portability between execution environments by having a clean contract
with the underlying operating system

● Obviates the need for servers and systems administration by being suitable for
deployment on modern cloud platforms

● Enables continuous deployment for maximum agility by minimizing divergence between
development and production

● Can scale up without significant changes to tooling, architecture, or development
practices.

1. Codebase
One codebase tracked in revision control, many deploys

Codebase
There is always a one-to-one

correlation between the
codebase and the app

● If there are multiple codebases, it’s not
an app – it’s a distributed system. Each
component in a distributed system is an
app, and each can individually comply
with twelve-factor.

● Multiple apps sharing the same code is
a violation of twelve-factor. The solution
here is to factor shared code into
libraries which can be included through
the dependency manager.

● There is only one codebase per app, but
there will be many deploys of the app. A
deploy is a running instance of the app.
This is typically a production site, and
one or more staging sites.

https://12factor.net/codebase

2. Dependencies
Explicitly declare and isolate dependencies

Dependencies
 It declares all dependencies,
completely and exactly, via a

dependency declaration
manifest.

● The full and explicit
dependency specification is
applied uniformly to both
production and development.

● One benefit of explicit
dependency declaration is that
it simplifies setup for
developers new to the app

● Twelve-factor apps also do not
rely on the implicit existence of
any system tools.

https://12factor.net/dependencies

3. Config
Store config in the environment

Config
The twelve-factor app stores

config in environment variables
(often shortened to env vars or

env)

● An app’s config is everything
that is likely to vary between
deploys (staging, production,
developer environments, etc).

● Config varies substantially
across deploys, code does not.

● Env vars are easy to change
between deploys without
changing any code; they are a
language- and OS-agnostic
standard.

https://12factor.net/config

4. Backing services
Treat backing services as attached resources

Backing
Services

A backing service is any service
the app consumes over the

network as part of its normal
operation.

● The code for a twelve-factor app
makes no distinction between
local and third party services.

● To the app, both are attached
resources, accessed via a URL or
other locator/credentials stored in
the config.

● The twelve-factor app treats these
databases as attached resources,
which indicates their loose
coupling to the deploy they are
attached to.

● Resources can be attached to and
detached from deploys at will.

https://12factor.net/backing-services
https://12factor.net/backing-services

5. Build, release, run
Strictly separate build and run stages

Build, release,
run

The twelve-factor app uses strict
separation between the build,

release, and run stages

● The build stage is a transform which
converts a code repo into an
executable bundle known as a build.

● The release stage takes the build
produced by the build stage and
combines it with the deploy’s current
config.

● The run stage (also known as
“runtime”) runs the app in the
execution environment, by launching
some set of the app’s processes
against a selected release.

https://12factor.net/build-release-run
https://12factor.net/build-release-run

6. Processes
Execute the app as one or more stateless processes

Processes
The app is executed in the

execution environment as one or
more processes.

● Twelve-factor processes are
stateless and share-nothing.

● Any data that needs to persist
must be stored in a stateful
backing service, typically a
database.

● Sticky sessions are a violation
of twelve-factor and should
never be used or relied upon.

https://12factor.net/processes

7. Port binding
Export services via port binding

Port binding
The web app exports HTTP as a
service by binding to a port, and
listening to requests coming in

on that port.

● Does not rely on runtime
injection of a webserver into
the execution environment to
create a web-facing service.

● Nearly any kind of server
software can be run via a
process binding to a port and
awaiting incoming requests.

● The port-binding approach
means that one app can
become the backing service for
another app

https://12factor.net/port-binding

8. Concurrency
Scale out via the process model

Concurrency
In the twelve-factor app,

processes are a first class
citizen.

● Using this model, the developer can
architect their app to handle diverse
workloads by assigning each type of
work to a process type.

● For example, HTTP requests may be
handled by a web process, and
long-running background tasks
handled by a worker process.

● The share-nothing, horizontally
partitionable nature of twelve-factor
app processes means that adding
more concurrency is a simple and
reliable operation.

● Twelve-factor app processes should
never daemonize or write PID files.

https://12factor.net/concurrency

9. Disposability
Maximize robustness with fast startup and graceful shutdown

Disposability
The twelve-factor app’s

processes are disposable,
meaning they can be started or
stopped at a moment’s notice

● This facilitates fast elastic
scaling, rapid deployment of code
or config changes, and
robustness of production deploys.

● Processes should strive to
minimize startup time.

● Processes shut down gracefully
when they receive a SIGTERM
signal from the process manager.

● Processes should also be robust
against sudden death, in the case
of a failure in the underlying
hardware.

https://12factor.net/disposability

10. Dev/prod parity
Keep development, staging, and production as similar as possible

Dev/prod parity
The twelve-factor app is designed

for continuous deployment by
keeping the gap between

development and production small.

● Historically, there have been substantial
gaps between development and
production. These gaps manifest in
three areas: time, personnel, tools

● Make the time gap small: a developer
may write code and have it deployed
hours or even just minutes later.

● Make the personnel gap small:
developers who wrote code are closely
involved in deploying it and watching its
behavior in production.

● Make the tools gap small: keep
development and production as similar
as possible.

https://12factor.net/dev-prod-parity

11. Logs
Treat logs as event streams

Logs
A twelve-factor app never

concerns itself with routing or
storage of its output stream.

● Logs provide visibility into the
behavior of a running app.

● Logs are the stream of
aggregated, time-ordered
events collected from the
output streams of all running
processes and backing
services.

● It should not attempt to write to
or manage logfiles. Instead,
each running process writes its
event stream, unbuffered, to
stdout

https://12factor.net/logs

12. Admin processes
Run admin/management tasks as one-off processes

Admin
processes

One-off admin processes should
be run in an identical environment

as the regular long-running
processes of the app.

● Developers will often wish to do
one-off administrative or
maintenance tasks for the app

● They run against a release, using the
same codebase and config as any
process run against that release.

● Admin code must ship with
application code to avoid
synchronization issues.

● Twelve-factor strongly favors
languages which provide a REPL
shell out of the box, and which make
it easy to run one-off scripts.

https://12factor.net/admin-processes
https://12factor.net/admin-processes

