
Intro to Software Version
Control: Not So Basic Git
Annette Spyker Mechelke
Twitter: @interannette
https://annette.mechelke.us

What will you learn in this talk?

● Why you should use version control in general, and Git in particular.

● How to get started with Git.

● An overview of the internals of Git.

● An introduction to the way teams use Git.

● You won’t learn any git commands

Who am I? ● Developer of Java web services.

● Work at Fetch Rewards

● Not a Git expert, but a Git user for 5

years

● Math major turned software

developer

Who are you? Who is a student? Working in IT? Working in

a non-IT field?

Who has used version control before? Who

has used Git before? Who is comfortable

with Git?

What is version control? And why
do you need it?

...version control, also known as revision
control or source control, is the management
of changes to documents, computer programs,
large web sites, and other collections of
information.

From Wikipedia for Version control

https://en.wikipedia.org/wiki/Version_control

Why do you need
version control?

https://xkcd.com/1459/

https://xkcd.com/1459/

Why do you need it when working on a team?

● Synchronization Of Code
○ Allows everyone to work on the same version of the code, and keep up to date as changes occur
○ Example: you have a project you have completed and you want to share the project files with a team member

● Integration Of Changes
○ Allow team members to work independently, and easily integrate changes when complete.
○ Example: you and a teammate are working on independent features in a project. How do you combine your

work once you have both completed your feature?

● Tracking Changes
○ Allows team members to trace each change made to the repository, and each change usually includes a

description of why the change occurred and who made the change.
○ Example: The only developer that worked on a feature leaves your team. You run into a problem and want to

understand why it was developed in the way that it was.

Why do you need it when working alone?

● Easily revert after making a mistake
○ Example: You make a changes, but run into unintended consequences and want to undo the changes.

● Test out a new approach without breaking project
○ Example: You want to try refactoring part of your code, but it will take a long time to do. In the meantime you

need to continue to fix bugs.

● Backup
○ If you host your version control system somewhere besides your personal computer, you have a built in

backup of your latest work
○ Example: your hard drive dies and all your code is lost

What type of systems are available?

● Centralized System
○ There is a central, shared server and all operations must go through that server.
○ The central server maintains the authoritative copy of the repository
○ Examples: SVN, CSV, Perforce

● Distributed System
○ Each copy of the repository contains the entire history and associated metadata for the repository. There is

not necessarily a central authoritative copy of the repository
○ Most common operations can be completed without communicating with a central server
○ Examples: Git, Mercurial

Benefits Of Distributed Systems

+ Most operations are faster in distributed system than in centralized systems

+ Most operations can be completed offline

+ Easy to share changes among peers, without sending to central server

+ More flexibility in workflows than with centralized systems

Common Terminology

● Repository - The data structure consisting of the files being tracked, history, and metadata.

● Clone - Creating a copy of an existing repository

● Commit -
○ Verb: submit local changes made in the working copy into the repository
○ Noun: the object that results from the submitted changes

● Push/Pull - copy revisions from one repository to another
○ We say “push” when we are uploading our changes to a remote server
○ We say “pull” when we are retrieving changes from a remote server

Basic Workflow 1. Ensure you have the most up to date

version
a. Clone the repository (first time)
b. Pull from the remote repository

2. Make your changes.

3. Commit your changes.

4. Push your changes to make them

available for others

Common
Abstraction

A repository and it’s history can be thought

of as a Directed Acyclic Graph (DAG)

● Graph: commits represented by
nodes on the graph

● Directed: Nodes have one or
more parents. Parent commit (i.e.
the state of the repository
before)

● Acyclic: no self reference of
commit to itself

What is Git? Why should you learn
it? How do you start?

What is Git?

https://xkcd.com/1597/

https://xkcd.com/1597/

What is Git?

● Open source distributed version control system

● Created in 2005 by Linux kernel development team (primarily Linus Torvalds) when the formerly

free DVCS they were using, BitKeeper, was no longer free. Their goals for the new system were:
○ Speed
○ Strong support for non-linear development (thousands of parallel branches)
○ Fully distributed
○ Able to handle large projects like the Linux kernel efficiently (speed and data size)

● Git is currently the most commonly used source control system (according to community surveys)

Why should you learn Git?

● It’s popular
○ De facto standard for version control in many circles, specifically open source projects
○ Many free online resources for learning or getting help
○ Many options for hosting repositories

● Flexible branching workflow

● Lightweight, no cost

● It’s fun!

How to get started
with Git?

Choose a user interface and install
the required tools

● Command line
○ Available for Mac, Windows, Linux
○ Generally the same across platforms,

versions

● GUI
○ Stand alone applications

■ SourceTree
■ GitHub desktop
■ and many others (list at

https://git-scm.com/downloads/guis)
○ IDE plug ins

■ Eclipse
■ JetBrains products
■ Visual Studio

How to get started
with Git?

Set up your config

● Each commit in git includes your name

and email address. You should set

these before beginning to use Git.

● You might also want to set the editor

to your prefered text editor.

● You can set these at a global (i.e.

system) level

How to get started
with Git?

Try out a tutorial

● try.github.io https://try.github.io/

● Learn Git With Bitbucket Cloud
https://www.atlassian.com/git/tutorials/learn-git
-with-bitbucket-cloud

● git - the simple guide
http://rogerdudler.github.io/git-guide/

https://try.github.io/
https://www.atlassian.com/git/tutorials/learn-git-with-bitbucket-cloud
http://rogerdudler.github.io/git-guide/

How to get started
with Git?

Where to host?

● Hosting Service
○ Github

■ Open source
■ Github pages

○ BitBucket
■ Private repos for individual

accounts
○ GitLab

■ Focused on integrated
development life cycle

● Self host
○ No remote
○ Publicly accessible server

What does the basic workflow
look in Git?

Every time you commit, or save the state of
your project in Git, it basically takes a picture
of what all your files look like at that moment
and stores a reference to that snapshot.

Git thinks about its data more like a stream of
snapshots.

Git Basics from Pro Git

https://git-scm.com/book/en/v2

How does Git store these snapshots?

● By default, Git stores all its internal data in

the hidden “.git” folder in the root of your

repository.

● All content is stored in the “objects”

directory, referenced by the SHA1 digest of

the contents.

● When I add the file to hello.txt to my Git
repository

my_repo/hello.txt

Git will add the file to it’s internal storage

my_repo/.git/objects/[SHA1]

What is a
cryptographic hash
function?
A function that takes a stream of
data and outputs a fixed length
alphanumeric string.

● The same file will always result in the

same value when hashed.

● Any changes to a file will result in a

new value when the updated file is

hashed. In other words, two different

files will have different hashes.

● Git uses the SHA1 hash of files to

reference and store file contents
○ Allows git to avoid storing duplicate

copies of a file
○ Allows git to compare files between

repositories without sending the
entire file

What is SHA1?
A cryptographic hash function.

Parts Of A Git Repository

● The working directory is the actual contents the file system.
○ These are the files you edit.
○ If you do nothing to tell git about the edits it doesn’t know changes occurred

● The index, or staging area, is a file in the .git directory that stores the list of changes that will be in

the next commit
○ You can think of the index as a list of changes

● The commit history, is the “series of snapshots”. It is the rest of .git directory.

States of a File

● Modified
● Staged
● Committed

1. You start with a “clean” working

directory.

2. You make some changes to hello.txt.

hello.txt is modified.

3. You add hello.txt to the index. hello.txt

is now staged.

4. You commit your changes. hello.txt is

now committed. You have a clean

working directory again.

5. Now would be a good time to push to

your remote server.

More States of a File

● Untracked
○ When a new file is created in the working directory, git does not know about it. At this point we say it is

untracked.

● Tracked
○ Once a new file is staged to the index git knows about it and we say it is tracked.
○ If you are editing an existing file, before you add it to the index, it is both modified and tracked.

● Ignored
○ You can tell git to ignore certain files. This prevents you from accidentally adding them and making them

tracked.

Ignoring Files

● Often there are files you do not want Git to track. E.g. log files, build results, temporary files.

● You can tell Git to ignore files in a few different ways
○ .gitignore file

■ You can create a .gitignore file in any directory and git will honor that
■ The most common is to create a .gitignore file at the root of the working directory
■ You can include specific file names, or include patterns to specify classes of files. (i.e. *.log)
■ .gitignore files are tracked like any other files in your repository

○ You can add config values to your system wide configuration that will apply across projects.

Making A Commit

https://xkcd.com/1296/ See also: Commit Logs From Last Night

http://www.commitlogsfromlastnight.com/

Best Practices For Commits

● Git forces you to provide a commit

message. You should make it informative to

future developers (and future you).

● Match any agreed upon style in your

commit message. E.g. reference issue

identifier, follow formatting guidelines .

● Commit frequently. Don’t save up a bunch

of changes to commit at once.

● Don’t commit half implemented features.

But feel free to break up large features into

smaller increments.

● Ensure you code compiles/builds/runs

before committing.

● If available, ensure tests pass.

● The command stash
○ Stores the state of any tracked files in

your working directory and index.
○ Unless you specify the

--include-untracked file argument,
untracked files will not be stashed.

○ The --patch lets you interactively
decide what changes to stash

● Commit what you have. Amend the

commit later.
○ Works well when working with

branches.
○ Do not amend any commits you have

already pushed.

● In either case, your changes aren’t

saved to a remote server.

Not ready to
commit?

Stash! Or amend!

Where are commits stored?

● When you add a file to the index, Git computes the SHA1 for the file and stores the file in the object
store.

○ Objects in the object store are stored in .git/objects/[first 2 characters of SHA1]/[file named by the remaining
38 characters of SHA1]

○ They are compressed before being stored. But may eventually get further compressed by being moved to a
pack file.

● Git makes an object with your commit metadata (name, email, commit message, parent commit)

and the index.

● It then computes the SHA1 of that content, and stores it in the object store just like the files in your

directory.

What objects are in
the object store?
● Blobs, e.g. files
● Trees, e.g. index
● Commits

Viewing Git History

● The command log lets you inspect previous commits.
○ There are many options available for the log command.

■ oneline
■ graph

○ Try setting up a git alias once you have found a display you like
● You can use gitk or other programs to visualize the Git history.

How to interact with other repositories?

● Remote repositories are the other versions of your repository, usually stored on other servers.
○ Permissions can be enforced on remotes, they can either be read/write or only read.
○ You can have references to many different remote repositories.
○ The remote command will list all known remote repositories
○ The remotes for a repository are stored in .git/refs/remotes

● The pull command will retrieve the contents of a remote reference and apply it to your local

repository.

● The push command takes a remote in it’s list of arguments, specifying which remote repository to

push to. If you have conflicting changes, the push command will fail.

What is a branch? How to teams
use them?

Branching ... is the duplication of an object
under revision control … so that modifications
can happen in parallel along both branches.

Branching also generally implies the ability to
later merge or integrate changes back onto
the parent branch. ... A branch not intended to
be merged … is usually called a fork.

From Wikipedia for Branching (version control)

https://en.wikipedia.org/wiki/Branching_(version_control)

Why use branches?

● Use separate branches for different release versions. This allows you to keep the existing version

available for quick fixes, while beginning development on the next version

● Isolate research to a branch. You might want to test out a new approach. You can do that on a

branch, then merge it in if you want to use it. Or delete the branch if you decide not to use it.

● Use a branch to serve as the place where multiple sets of changes are integrated and tested.

● Git branches are lightweight and fast, in contrast to many other VCSs.

● In Git a branch is simply a pointer to a commit object.
○ Creating a new branch is simply a matter of making a new pointer.
○ When you commit while on a branch, the pointer for that branch is updated to point to the new commit.
○ These pointers are stored in .git/branches

● Git keeps a special pointer called HEAD that points to the local branch you are currently on.

● Changing branches results:
○ in the HEAD pointer being moved to point to the new branch and
○ updating the working directory to the state indicated in the commit HEAD is now pointing to.

How Does Git Handle Branching?

Merging Branches

Fast Forward Merge
● A merge where there is no

divergent work.
● Git can simply update the

pointer to point to the latest
commit.

Merging Branches
Three Way Merge

● If the branches have diverged, Git
attempts to merge the two branches
automatically.

● If successful, Git commits the
merged content as a merge commit.
A merge commit is just a regular
commit except that it has two
parents.

● It is called a three way merge
because Git uses the two branches
and their common ancestor to
compute the merge.

Merging Branches
Merge With Conflicts
● If Git cannot automatically

merge the contents, it pauses
the process and prompts you
to resolve the conflicts
manually.

● Once you have resolved the
conflicts, you manually create
the merge commit.

● Conflict markers look something like this:

<<<<<<< HEAD:hello.txt
Hello world
=======
Hello world!
>>>>>>> fix:hello.txt

What does a conflicted merge look like?

● Any files that do not have conflicts are

merged and added to the index.

● Any files that have merge conflicts are not

added to the index.

● Files with conflicts are updated in your

working directory using conflict markers.

● You resolve conflicts by updating the files,

and adding the files to the index.

Common Branch Terms

● The branch master is usually used for the current production version of the code.
○ Most repositories have a master branch because Git creates it when you initialize a repository.
○ To Git, there is nothing special about master. It is just like any other branch.

● Many teams utilize long running branches to integrate different features. Test builds are often

based off of these branches.

● Feature branches are used to contain all the work for a given feature until it is complete

● Remote tracking branches are references in your local repository to branches on a remote server.

Working With Remote Tracking Branches

● Remote tracking branches are referenced by a name of the form <remote>/<branch>, e.g.

origin/master

● In most cases you have a local and remote tracking pair. (Git will handle this automatically if the

branches have the same name.)

● You can manually set the remote tracking branch if Git does not automatically pair the local and

remote branch.

● You can use the fetch command to retrieve remote changes without updating you local copy. Git

pull fetches any changes in the remote branch and applies them to your local repository.

Workflows In Git

● Because Git is very flexible, there are many different approaches to using Git in the software

development life cycle.

● These workflows should be thought of as a starting place. You are free to modify them so they work

with your team’s process.

● The most important part of a Git workflow is that your team agrees on it and everyone follows it.

(Or a compatible variation.)

● Some things to consider when selecting, or honing, a workflow:
○ How does your team work? Git should be a tool that enables your team, not a hoop you have to jump through.
○ What is the “standard” process? Everyone should know how it works.
○ What do you do if you make a mistake? Mistakes happen, you need to have a plan for how to recover.

Developers make changes on local
tracking branches of master.

Features are pushed to remote
master when complete.

Before pushing, the developer
must ensure they are up to date
with remote master.

Centralized
Workflow

● In this workflow there are no

branches besides master.

● Centralized workflows use Git to

mimic the behavior of a centralized

VCS.

● Useful when transitioning a team from

a centralized system to a Git

● Useful for individuals or very small

teams.

● Requires that features be able to

apply to remote master without

conflicts.

Central repository master serves
as the official current version of
code.

All development is done on a
feature branch and merged into
master when complete.

Feature Branch
Workflow

● This branching strategy is used as the

basis for more complex Git workflows.

● Popular with teams that utilize

continuous integration or continuous

delivery

● Feature branches should be pushed to

the central server.

● Pull requests are often utilized when

merging a feature branch into master.

Gitflow Workflow ● First outlined in 2010 in a blog post A

successful Git branching model by

Vincent Driessen

● Based on feature branches. Teams can

still utilize pull requests.

● Useful for large teams with strict

release cycles or process

requirements.

● Gitflow plugin is available to facilitate

the operations specified in the

workflow

Similar to the feature branch
workflow, but with a few long
running branches.

Each branch has a very specific
purpose and rules about how it
should be used.

http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/about/

Gitflow Workflow
Illustrated

http://nvie.com/posts/a-successful-git-branching-model/

Official central repository that only
the maintainer can push to.

Contributors each create their own
“fork” of the official repository.

Contributors complete their work
in their own repository, then
submit a pull request to the
maintainer of the official
repository.

Fork Workflow ● Useful for public, open source

projects.

● A “fork” is just a clone of the original

repository.
○ We use the term fork for the server

side copy of the repository
○ Each users will also have a local copy

of their forked repository.

● Github and Bitbucket have these

operations (fork and pull request)

built into their interfaces.

But wait, there’s more!

Other Features To Be Aware Of

● Some things you should know about as you dive into Git. In no particular order:
○ Git Hooks
○ Git blame
○ Tags
○ Rebase
○ Cherry pick

Resources

● Pro Git by Scott Chacon and Ben Straub (free ebook version)

● Version Control With Git by Jon Loeliger, Matthew McCullough

● Atlassian Tutorials - https://www.atlassian.com/git/tutorials
● Wikipedia

○ Version Control
○ Branching (Version Control)

https://git-scm.com/book/en/v2
https://www.amazon.com/_/dp/1449316387
https://www.atlassian.com/git/tutorials
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Branching_(version_control)

Questions?

Thank you!

