
@interannetteUnit Testing @
Codecinella

Unit Testing
Introduction &

Discussion

Annette Mechelke
@ Codecinella, June 4th, 2019

@interannetteUnit Testing @
Codecinella

Outline

● What is unit testing?
● What are the benefits of unit testing?
● What are some challenges associated with unit testing?
● What are some best practices?

@interannetteUnit Testing @
Codecinella

What is unit testing?

Unit testing is a type of
software testing where
individual units of source
code are validated to
function as expected.

Unit tests are:

● Automated
● White box testing
● Lowest level of testing
● Usually written by developers of

the system

@interannetteUnit Testing @
Codecinella

What is a unit?

● A unit is a small testable part of the code.
○ In object oriented programming, it’s usually some method on a class
○ In imperative or functional programming, it’s usually a single function
○ Different teams define “small” differently

● It should have a small number of inputs and a single output to validate.
● It may have dependencies (we’ll come back to this)

@interannetteUnit Testing @
Codecinella

What does a unit test look like?

● Set up
● Call the code under test
● Assert the results are as expected

public class Calculator {
 public int add(int a, int b){
 return a + b;
 }
}

@Test
public void ensure_Negatives() {
 Calculator c = new Calculator();
 int result = c.add(0, -1);
 Assert.assertEquals(-1, result);
}

@interannetteUnit Testing @
Codecinella

What are the benefits of unit testing?

● Ensures some amount of correctness. (But they can’t ensure you’ll never
have any bugs!)

● Improve the design of the code under test
○ If you can’t easily write a unit test, it’s a code smell.
○ Forces the developer to define a contract for the unit

● Can catch bugs earlier in the development cycle. (Where they are cheaper to
fix.)

● Increases confidence in refactoring existing code.
● Can serve as a type of documentation.

@interannetteUnit Testing @
Codecinella

What are some of the challenges?

● How to define a unit?
● How to handle dependencies?
● Ensuring they are fast
● Ensuring they are not a burden to maintain
● Ensuring they are part of the development process

@interannetteUnit Testing @
Codecinella

Best Practices - Test Writing

● Keep each test independent
● Limit assertions to only what you really need
● Name your tests clearly and consistently
● Pick high value to tests
● Cover the edge cases
● Mock external dependencies and state

@interannetteUnit Testing @
Codecinella

Best Practices - Test Process

● Use a unit test framework
● Track unit tests in source control, commonly as part of the main codebase
● Run the tests on build; if the tests fail, follow up!
● When you fix a bug, write a test that fails first, then fix the bug
● Recognize unit test headaches as sign you need to revisit the design of the

code

@interannetteUnit Testing @
Codecinella

Discussion!

● Do you use unit testing?
● What challenges have you run into?
● What benefits have you noticed?

@interannetteUnit Testing @
Codecinella

References

● https://martinfowler.com/bliki/UnitTest.html
● http://softwaretestingfundamentals.com/unit-testing
● http://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-

and-worst-practises/
● https://stackify.com/unit-testing-basics-best-practices/
● https://en.wikipedia.org/wiki/Unit_testing

https://martinfowler.com/bliki/UnitTest.html
http://softwaretestingfundamentals.com/unit-testing
http://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises/
http://blog.stevensanderson.com/2009/08/24/writing-great-unit-tests-best-and-worst-practises/
https://stackify.com/unit-testing-basics-best-practices/
https://en.wikipedia.org/wiki/Unit_testing

@interannetteUnit Testing @
Codecinella

Related Topics

● Unit Test Frameworks
○ Mocking Frameworks
○ Assertion Frameworks

● Code Coverage
● Test Driven Development

